- NS2583 同步升壓型 2A 雙節(jié)鋰電池充電管理 IC
- NLC47022帶NTC功能和電量均衡功能電流2A 5V異
- PT2027 單觸控雙輸出 LED 調光 IC
- HT316C兼容HT326C防破音功能免電感濾波2×20WD
- HT3386兼容TPA3118 2×50W D類立體聲音頻功放
- NS8220 300mW 雙聲道耳機音頻放大器
- HT6875 2.8W防削頂單聲道D類音頻功率放大器
- HT77221 HT77211 4.0V~30V輸入,2A/1.2A同步降壓變換器
- NS4117X 系列 外置 MOS 管開關降壓型 LED 恒流控制器
- HT71663 13V,12A全集成同步升壓轉換器
- HT71763 20V,15A全集成同步升壓轉換器
- NS2160 同步開關型降壓鋰電池充電管理 IC
- HT7702 2.5~5.5V輸入,2A同步降壓變換器
- HT77231 4.0V~28V輸入,3.5A同步降壓變換器
D類功放原理
D類功放可以分為3部分,1.調制器;2.放大器;3.低通濾波器。
第一部分為調制器,最簡單的只需用一只運放 構成比較器即可完成。把原始音頻信號加上一定直流偏置后放在運放的正輸入端,另通過自激振蕩生成一個三角形波加到運放的負輸入端。當正端上的電位高于負端 三角波電位時,比較器輸出為高電平,反之則輸出低電平。若音頻輸入信號為零、直流偏置三角波峰值的1/2,則比較器輸出的高低電平持續(xù)的時間一樣,輸出就 是一個占空比為1:1的方波。當有音頻信號輸入時,正半周期間,比較器輸出高電平的時間比低電平長,方波的占空比大于1:1;負半周期間,由于還有直流偏 置,所以比較器正輸入端的電平還是大于零,但音頻信號幅度高于三角波幅度的時間卻大為減少,方波占空比小于1:1。這樣,比較器輸出的波形就是一個脈沖寬 度被音頻信號幅度調制后的波形,稱為PWM(Pulse Width Modulation脈寬調制)或PDM(Pulse Duration Modulation脈沖持續(xù)時間調制)波形。音頻信息被調制到脈沖波形中。
第二部分就是D類功放,這是一個脈沖控制的大電流開關放大器,把比較器輸出的PWM信號變成高電壓、大電流的大功率PWM信號。能夠輸出的最大功率有負載、電源電壓和晶體管允許流過的電流來決定。
第三部分需把大功率PWM波形中的聲音信息還原出來。方法很簡單,只需要用一個低通濾波器。但由于此時電流很大,RC結構的低通濾波器電阻會耗 能,不能采用,必須使用LC低通濾波器。當占空比大于1:1的脈沖到來時,C的充電時間大于放電時間,輸出電平上升;窄脈沖到來時,放電時間長,輸出電平 下降,正好與原音頻信號的幅度變化相一致,所以原音頻信號被恢復出來,見圖2。
影響因素:
D類功放設計考慮的角度與AB類功放完全不 同。此時功放管的線性已沒有太大意義,更重要的開關響應和飽和壓降。由于功放管處理的脈沖頻率是音頻信號的幾十倍,且要求保持良好的脈沖前后沿,所以管子 的開關響應要好。另外,整機的效率全在于管子飽和壓降引起的管耗。所以,飽和管壓降小不但效率高,功放管的散熱結構也能得到簡化。若干年前,這種高頻大功 率管的價格昂貴,在一定程度上限制了D類功放的發(fā)展?,F在小電流控制大電流的MOSFET已普遍運用于工業(yè)領域,特別是近年來UHC MOSFET已在Hi-Fi功放上應用,器件的障礙已經消除。
調制電路也是D類功放的一個特殊環(huán)節(jié)。要把20KHz以下的音頻調制成PWM信號,三角波的頻率至少要達到200KHz。頻率過低達到同樣要求 的THD標準,對無源LC低通濾波器的元件要求就高,結構復雜。頻率高,輸出波形的鋸齒小,更加接近原波形,THD小,而且可以用低數值、小體積和精度要 求相對差一些的電感和電容來制成濾波器,造價相應降低。但此時晶體管的開關損耗會隨頻率上升而上升,無源器件中的高頻損耗、謝頻的取膚效應都會使整機效率 下降。更高的調制頻率還會出現射頻干擾,所以調制頻率也不能高于1MHz。
同時,三角波形的形狀、頻率的準確性和時鐘信號的抖晃都會影響到以后復原的信號與原信號不同而產生失真。所以要實現高保真,出現了很多與數字音響保真相同的考慮。
還有一個與音質有很大關系的因數就是位于驅動輸出與負載之間的無源濾波器。該低通濾波器工作在大電流下,負載就是音箱。嚴格地講,設計時應把音 箱阻抗的變化一起考慮進去,但作為一個功放產品指定音箱是行不通的,所以D類功放與音箱的搭配中更有發(fā)燒友馳騁的天地。實際證明,當失真要求在0.5%以 下時,用二階Butterworth最平坦響應低通濾波器就能達到要求。如要求更高則需用四階濾波器,這時成本和匹配等問題都必須加以考慮。
上一篇:霍爾器件解析
下一篇:三端穩(wěn)壓集成應用電路介紹